$\mathcal{D}\text{-modules}$

Julian Reichardt

12.09.2024

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

The long and the short of it

\mathfrak{sl}_2 is the tangent space of SL_2 at the identity

There is the following:

イロン イボン イヨン イヨン

3

イロト 不得 とくき とくき とうき

Some Sheaves on X

Throughout, X is a smooth complex variety.

Definition (Sheaf of C-linear Endomorphisms)

Let \mathcal{M} be a sheaf of \mathbb{C} -vector spaces on X. The **sheaf of \mathbb{C}-linear** endomorphisms of \mathcal{M} , denoted by $\mathcal{E}nd_{\mathbb{C}}(\mathcal{M})$, is the sheaf of rings

 $U\mapsto \operatorname{Hom}_{\underline{\mathbb{C}}_X}(\mathcal{M}|_U,\mathcal{M}|_U)$,

where $\underline{\mathbb{C}}_X$ is the constant sheaf associated to \mathbb{C} .

Remark: \mathcal{O}_X is a subsheaf of $\mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X)$ via (left) multiplication.

Definition (Tangent Sheaf)

The **tangent sheaf** of X, denoted by \mathcal{T}_X , is the subsheaf

$$\mathcal{T}_X = \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X) = \left\{ \theta \in \mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X) \, | \, \theta(fg) = f\theta(g) + g\theta(f) \right\}.$$

From Lie Algebras to \mathcal{D} -modules

Sheaves of Differential Operators and \mathcal{D} -modules Two Examples: \mathbb{A}^n and \mathbb{P}^1

(a)

-

Differential Operators and \mathcal{D} -modules

Definition (Sheaf of Differential Operators)

The subsheaf of \mathbb{C} -algebras generated by \mathcal{O}_X and \mathcal{T}_X in $\mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X)$ is the sheaf of differential operators on X, denoted by \mathcal{D}_X .

Definition (*D*-module)

Let \mathcal{M} be a quasi-coherent \mathcal{O}_X -module. We say that \mathcal{M} is a **(left)** \mathcal{D} -module if $\mathcal{M}(U)$ is endowed with the structure of a (left) $\mathcal{D}_X(U)$ -module for every open subset $U \subseteq X$ and these structures are compatible with restrictions.

Remark: A (left) \mathcal{D} -module \mathcal{M} may, equivalently, be given as a quasi-coherent \mathcal{O}_X -module \mathcal{M} equipped with a $\underline{\mathbb{C}}_X$ -linear morphism of sheaves $\nabla : \mathcal{T}_X \to \mathcal{E}nd_{\mathbb{C}}(\mathcal{M})$ satisfying, in particular, a Leibniz-type rule.

Example: $X = \mathbb{A}^n$

Sheaves of Differential Operators and \mathcal{D} -modules Two Examples: Aⁿ and P¹

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Sheaves on affine n-space \mathbb{A}^n are determined by their global sections

Example: $X = \mathbb{A}^n$

Since X is affine, $\mathcal{D}(\mathbb{A}^n) = \mathcal{D}_X(X)$ is a C-subalgebra of

$$\mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X)(X) = \operatorname{End}_{\mathbb{C}}(\mathcal{O}_X(X)) = \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x_1,\ldots,x_n]).$$

This subalgebra is spanned by the elements of

$$\mathcal{O}_X(X) = \mathbb{C}[x_1, \dots, x_n]$$
 and $\mathcal{T}_X(X) = \bigoplus_{i=1}^n \mathbb{C}[x_1, \dots, x_n]\partial_{x_i}$

where $f \in \mathbb{C}[x_1, \ldots, x_n]$ acts by (left) multiplication and ∂_{x_i} acts by taking the partial derivative with respect to x_i .

Since endomorphism rings are generally noncommutative, we have to compute the commutator relations for the 2n generators x_1, \ldots, x_n and $\partial_{x_1}, \ldots, \partial_{x_n}$. These are

$$[x_i, x_j](f) = x_i(x_j f) - x_j(x_i f) = 0$$

$$[\partial_{x_i}, \partial_{x_j}](f) = \partial_{x_i}(\partial_{x_j} f) - \partial_{x_j}(\partial_{x_i} f) = 0$$

$$[\partial_{x_i}, x_j](f) = \partial_{x_i}(x_j f) - x_j(\partial_{x_i} f) = \delta_{ij} f + x_j(\partial_{x_i} f) - x_j(\partial_{x_i} f) = \delta_{ij} f$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Thus, we can identify $\mathcal{D}(\mathbb{A}^n)$ with the *n*-th Weyl algebra $A_n(\mathbb{C})$, which is defined as

$$A_n(\mathbb{C}) = \frac{\mathbb{C}\langle x_1, \dots, x_n, y_1, \dots, y_n \rangle}{\langle [x_i, x_j], [y_i, y_j], [x_i, y_j] - \delta_{ij} \rangle}$$

Consequently, (left) \mathcal{D} -modules correspond to (left) modules over the (noncommutative) Weyl algebras.

Example: $X = \mathbb{P}^1$

Sheaves of Differential Operators and \mathcal{D} -modules Two Examples: \mathbb{A}^n and \mathbb{P}^1

3

Sheaves on projective *n*-space \mathbb{P}^n are determined by their restrictions to the standard affine cover by affine *n*-spaces \mathbb{A}^n together with glueing conditions for their intersections

イロト 不得 トイヨト イヨト ニヨー

Let $U_0 = \{ [x_0 : x_1] \mid x_0 \neq 0 \}$ and $U_1 = \{ [x_0 : x_1] \mid x_1 \neq 0 \}$ be the standard affine cover of X. Then $U_0 \cong U_1 \cong \mathbb{A}^1$ and $U_0 \cap U_1 \cong D(0) = \mathbb{A}^1 \setminus \{0\}$.

Choosing coordinates, we have $\mathcal{O}_X(U_0) = \mathbb{C}[t]$, $\mathcal{O}_X(U_1) = \mathbb{C}[s]$ and $\mathcal{O}_X(U_0 \cap U_1) = \mathbb{C}[t, t^{-1}]$ with $s = t^{-1}$. Then $\mathcal{D}_X(U_0)$ is generated by t and ∂_t and $\mathcal{D}_X(U_1)$ is generated by s and ∂_s . On the intersection, we find that

$$\partial_t(s) = \partial_t(t^{-1}) = -t^{-2}\partial_s(s) \implies \partial_s = -t^2\partial_t$$

as the defining relation. Here we use that $\mathcal{D}_X(U_0 \cap U_1)$ is generated by t, t^{-1} and ∂_t , being the restriction of $\mathcal{D}_X(U_0)$ to a distinguished open. Consequently, a \mathcal{D} -module on X is given by a pair of $A_1(\mathbb{C})$ -modules, whose localisations at tand $s = t^{-1}$, respectively, are isomorphic.

Remark: In contrast to general \mathcal{O}_X -modules on \mathbb{P}^1 , it turns out that \mathcal{D} -modules on \mathbb{P}^1 are completely determined by their global sections.

D(P¹) and 𝔄(𝔅𝑔₂) Towards Beilinson−Bernstein

(a)

$\mathcal{T}(\mathbb{P}^1)$ as Lie algebra

$\mathcal{T}(\mathbb{P}^1)$ together with the commutator of derivations is a Lie algebra, which is isomorphic to \mathfrak{sl}_2

We consider the standard affine cover as before. Since \mathcal{T}_X is a sheaf, we can compute $\mathcal{T}(\mathbb{P}^1) = \mathcal{T}_X(X)$ from the corresponding exact sequence:

$$0 \longrightarrow \mathcal{T}(\mathbb{P}^1) \longrightarrow \mathcal{T}_X(U_0) \times \mathcal{T}_X(U_1) \longrightarrow \mathcal{T}_X(U_0 \cap U_1).$$

In the given coordinates, we know that $\mathcal{T}_X(U_0) = \mathbb{C}[t]\partial_t$, $\mathcal{T}_X(U_1) = \mathbb{C}[s]\partial_s$, $\mathcal{T}_X(U_0 \cap U_1) = \mathbb{C}[t, t^{-1}]\partial_t$ with $s = t^{-1}$ and $\partial_s = -t^2\partial_t$.

A pair $(f(t)\partial_t, g(s)\partial_s)$ defines an element of $\mathcal{T}(\mathbb{P}^1)$ iff

$$f(t)\partial_t - g(t^{-1})(-t^2\partial_t) = 0 \iff$$

$$a_0\partial_t + a_1t\partial_t + a_2t^2\partial_t + \dots = -(b_0t^2\partial_t + b_1t\partial_t + b_2\partial_t + \dots).$$

This is only possible if deg f(t), deg $g(s) \leq 2$. Thus, $\mathcal{T}(\mathbb{P}^1)$ can be identified with the subspace of $\mathcal{T}_X(U_0) = \mathbb{C}[t]\partial_t$ generated by ∂_t , $t\partial_t$ and $t^2\partial_t$.

$\mathcal{T}(\mathbb{P}^1)$ as Lie algebra

Denote
$$e = -\partial_t$$
, $f = t^2 \partial_t$ and $h = -2t \partial_t$. Then
 $[h, e] = [-2t\partial_t, -\partial_t] = 2t[\partial_t, \partial_t] + [2t, \partial_t]\partial_t = -2\partial_t = 2e$.

Similarly, [h, f] = -2f as well as [e, f] = h. This defines an isomorphism of \mathfrak{sl}_2 and $\mathcal{T}(\mathbb{P}^1)$ as Lie algebras. Since $\mathcal{O}(\mathbb{P}^1) = \mathbb{C}$, $\mathcal{T}(\mathbb{P}^1)$ generates $\mathcal{D}(\mathbb{P}^1)$ as \mathbb{C} -algebra and there is an induced morphism

$$\mathfrak{U}(\mathfrak{sl}_2) \to \mathcal{D}(\mathbb{P}^1)$$

from the universal enveloping algebra of \mathfrak{sl}_2 to $\mathcal{D}(\mathbb{P}^1).$ We know that the centre of $\mathfrak{U}(\mathfrak{sl}_2)$ is generated by the Casimir element

$$\Omega = 2\left(\frac{1}{2}h^2 + ef + fe\right) = h^2 + 2(ef - fe) + 4fe = h^2 + 2h + 4fe$$
.

One checks that

$$(-2t\partial_t)^2 + 2(-2t\partial_t) + 4(t^2\partial_t)(-\partial_t) = 4t([\partial_t, t] + t\partial_t)\partial_t - 4t\partial_t - 4t^2\partial_t^2$$

= 4t(1+t\partial_t)\partial_t - 4t(1+t\partial_t)\partial_t = 0.

Part of the assertion of Beilinson–Bernstein's localisation theorem is that this induces an isomorphism

$$\mathfrak{U}(\mathfrak{sl}_2)/Z(\mathfrak{U}(\mathfrak{sl}_2))\cdot\mathfrak{U}(\mathfrak{sl}_2)\xrightarrow{\sim}\mathcal{D}(\mathbb{P}^1).$$

イロト 不得 とくき とくき とうき

A Final Remark

There is a natural (algebraic) action of SL_2 on \mathbb{P}^1 via linear fractional transformations, which yields the map $\mathfrak{sl}_2 \to \mathcal{T}(\mathbb{P}^1)$ by (algebraic) differentiation

Definition and Examples of D-modules From Lie Algebras to D-modules

э.

Sketch: Intrinsic Construction of $\mathfrak{U}(\mathfrak{sl}_2) \to \mathcal{D}(\mathbb{P}^1)$

The map $\mathfrak{U}(\mathfrak{sl}_2) \to \mathcal{D}(\mathbb{P}^1)$ admits an intrinsic description, using: (1) \mathbb{P}^1 is the *flag variety* of SL₂, admitting a natural SL₂-action; (2) \mathfrak{sl}_2 is the tangent space of SL₂ at the identity.

Sketch: Intrinsic Construction of $\mathfrak{U}(\mathfrak{sl}_2) \to \mathcal{D}(\mathbb{P}^1)$

We want to construct a map $\mathfrak{U}(\mathfrak{sl}_2) \to \mathcal{D}(\mathbb{P}^1)$. We know that $\mathcal{D}(\mathbb{P}^1)$ is generated, as C-algebra, by $\mathcal{T}(\mathbb{P}^1)$. So it suffices to associate to any element of \mathfrak{sl}_2 a derivation of sheaves $\mathcal{O}_{\mathbb{P}^1} \to \mathcal{O}_{\mathbb{P}^1}$, which is determined by its restriction to the standard affine cover.

On the affine chart U_0 , SL₂ acts by linear fractional transformations on $t \in U_0$:

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \cdot \mathsf{t} = \frac{\mathsf{a}\mathsf{t} + \mathsf{b}}{\mathsf{c}\mathsf{t} + \mathsf{d}}$$

This induces an action on $f \in \mathcal{O}_{\mathbb{P}^1}(U_0)$:

$$\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f\right)(t) = f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \cdot t\right) = f\left(\frac{dt-b}{a-ct}\right).$$

This naturally leads to a realisation of the elements of \mathfrak{sl}_2 as derivations of $\mathcal{O}_{\mathbb{P}^1}(U_0).$

Sketch: Intrinsic Construction of $\mathfrak{U}(\mathfrak{sl}_2) \to \mathcal{D}(\mathbb{P}^1)$

Let $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}_2$. Since \mathfrak{sl}_2 is the tangent space of SL_2 at the identity, there is an isomorphism

$$\mathfrak{sl}_2 \to \mathrm{SL}_2(\mathbb{C}[\epsilon])_I, \qquad M \mapsto I + \epsilon M$$

which identifies e with the invertible matrix $E = \begin{pmatrix} 1 & e \\ 0 & 1 \end{pmatrix}$. Here $\mathbb{C}[e]$ denotes the dual numbers, hence $e^2 = 0$. From this we obtain

$$(E \cdot f)(t) = f(E^{-1} \cdot t) = f(t - \epsilon) = f(t) + (-f'(t))\epsilon$$

Thus, the differential of E, which by construction describes the induced action of e, is given by the derivation $-\partial_t$, as expected. A similar computation associates to f the derivation $t^2\partial_t$ and to h the derivation $-2t\partial_t$, respectively.