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The long and the short of it

slp is the tangent space of SLy at the identity
There is the following:

flag variety

SL, P!
tangent space global sections of
at identity tangent sheaf
slo e T (P1)
universal enveloping global sections of sheaf
algebra of differential operators
u(ﬁ[z) ?

Julian Reichardt D-modules



Definition and Examples of D-modules Sheaves of Differential Operators and D-modules
Two Examples: A" and P

Some Sheaves on X

Throughout, X is a smooth complex variety.

Definition (Sheaf of C-linear Endomorphisms)

Let M be a sheaf of C-vector spaces on X. The sheaf of C-linear
endomorphisms of M, denoted by End¢c (M), is the sheaf of rings

U — Hom¢, (M|y, M|y),
where Cy is the constant sheaf associated to C.
Remark: Ox is a subsheaf of Endc(Ox) via (left) multiplication.

Definition (Tangent Sheaf)

The tangent sheaf of X, denoted by Ty, is the subsheaf

Tx = Derc(Ox) = {0 € Endc(Ox) |0(fg) = f0(g) +g0(f)} .
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Differential Operators and D-modules

Definition (Sheaf of Differential Operators)

The subsheaf of C-algebras generated by Ox and Tx in Endc(Ox) is the
sheaf of differential operators on X, denoted by Dy.

Definition (D-module)

Let M be a quasi-coherent Ox-module. We say that M is a (left) D-module
if M(U) is endowed with the structure of a (left) Dx (U)-module for every
open subset U C X and these structures are compatible with restrictions.

Remark: A (left) D-module M may, equivalently, be given as a quasi-coherent
Ox-module M equipped with a Cx-linear morphism of sheaves
V: Tx — Endg (M) satisfying, in particular, a Leibniz-type rule.
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Example: X = A"

Sheaves on affine n-space A" are determined by their global
sections
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Example: X = A"

Since X is affine, D(A") = Dx(X) is a C-subalgebra of
Endc(OX)(X) = Endc(OX(X)) = Endc(C[Xl, . .,Xn]) .

This subalgebra is spanned by the elements of

n

Ox(X) = C[Xl,...,x,,] and Tx(X) = @C[xl,...,x,,}ax,.
i=1

where f € C[xq, ..., xn| acts by (left) multiplication and 9y, acts by taking the

partial derivative with respect to x;.

Since endomorphism rings are generally noncommutative, we have to compute
the commutator relations for the 2n generators xi,...,x, and 0y, ..., 0x,.
These are
[xi, ] (F) = xi (x;f) — x;(x;f) =0
[ax,-v axj](f) (an f) - ij (ax,-f) =0
(05, )(F) = 95, () — % (9xF) = 0f + xj(dx ) — xj(9x ) = Oj5F
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Example: X = A"

Thus, we can identify D(A") with the n-th Weyl algebra A,(C), which is
defined as

C(X1, ey Xpy Y11 -+ 1 Yn)
An(C) = .
"= Tl byl Bl — )
Consequently, (left) D-modules correspond to (left) modules over the
(noncommutative) Weyl algebras.
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Example: X = P!

Sheaves on projective n-space IP" are determined by their
restrictions to the standard affine cover by affine n-spaces A"
together with glueing conditions for their intersections
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Example: X = P!

Let Uy = {[xo0 : x1] | x0 # 0} and U; = {[x0 : x1] | x1 # 0} be the standard
affine cover of X. Then Uy = Uy = Al and UpN Uy = D(0) = AL\ {0}.

Choosing coordinates, we have Ox (Up) = C[t], Ox(U1) = C|[s] and
Ox(UpNUp) = C[t, t71] with s = t 1. Then Dx(Up) is generated by t and
ot and Dx(U,) is generated by s and ds. On the intersection, we find that

9t(s) = 9 (t7 1) = —t205(s) = 9s = —t20;

as the defining relation. Here we use that Dy (Up N Uy) is generated by t, 1
and 9¢, being the restriction of Dx (Up) to a distinguished open. Consequently,
a D-module on X is given by a pair of A;(C)-modules, whose localisations at t
and s = t71, respectively, are isomorphic.

Remark: In contrast to general @x-modules on IP1, it turns out that
D-modules on P! are completely determined by their global sections.
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D(PL) and su(s15)
From Lie Algebras to D-modules Towards Beilinson—Bernstein

T (IP1) as Lie algebra

T (IP) together with the commutator of derivations is a Lie
algebra, which is isomorphic to sl
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D(PL) and s1(
From Lie Algebras to D-modules Towards Beilin

T (IP1) as Lie algebra

We consider the standard affine cover as before. Since Tx is a sheaf, we can
compute T (IP1) = Tx(X) from the corresponding exact sequence:

0 —— T(PY) —— Tx(Up) x Tx(Ur) —— Tx(UpN Uy).

In the given coordinates, we know that Tx (Up) = C[t]9¢, Tx(U1) = CJs]0s,
Tx(Up N Uy) = C[t, t71]9; with s = t71 and 95 = —t20;.

A pair (f(t)d¢, g(5)ds) defines an element of T (P1) iff
f(t)o: —g(t 1) (—t%0;) =0 <=
aoat + altat + 32t28t + = —(b0t28t + bltat + b28t + - ) .

This is only possible if deg f(t), deg g(s) < 2. Thus, T (IP!) can be identified
with the subspace of Tx(Up) = C[t]9; generated by 9;, td; and t20;.
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D(PL) and su(s15)
From Lie Algebras to D-modules Towards Beilinson—Bernstein

T (IP1) as Lie algebra

Denote e = —9¢, f = t29; and h = —2td;. Then
[h, e] = [72t8t, *at] = 2t[at, at] + [2t, at]at = *28t = 2e.

Similarly, [h, f] = —2f as well as [e, f] = h. This defines an isomorphism of sly
and 7 (IP1) as Lie algebras. Since O(IP1) = C, T (IP!) generates D(IP!) as
C-algebra and there is an induced morphism

U(slp) — D(IPY)

from the universal enveloping algebra of sly to D(IP1). We know that the
centre of U(sly) is generated by the Casimir element

Q=2 (%hz-i—ef—i—fe) — W2 4+ 2(ef — fe) + 4fe = h? + 2h + 4fe.
One checks that
(—2t0;)% + 2(—2t0;) + 4(t%0;) (—0¢) = 4t([0¢, t] + t3¢)0; — 4t — 4t°0?

Part of the assertion of Beilinson—Bernstein's localisation theorem is that this
induces an isomorphism

U(slo)/Z(8U(slp)) - U(slp) = D(PL).



D(P!) and U(s13)
From Lie Algebras to D-modules Towards Beilinson—Bernstein

A Final Remark

There is a natural (algebraic) action of SL; on IP! via linear
fractional transformations, which yields the map sl — 7 (IP!) by
(algebraic) differentiation

Julian Reichardt D-modules



D(P!) and U(s13)
From Lie Algebras to D-modules Towards Beilinson—Bernstein

Sketch: Intrinsic Construction of {(sly) — D(IP!)

The map U(sly) — D(IP') admits an intrinsic description, using:
(1) P! is the flag variety of SLy, admitting a natural SLj-action;
(2) sly is the tangent space of SL; at the identity.
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D(PL) and U(s1o
From Lie Algebras to D-modules Towards Beilinson—Bernstein

Sketch: Intrinsic Construction of {(sly) — D(IP!)

We want to construct a map i(slp) — D(IP!). We know that D(IP!) is
generated, as C-algebra, by 7 (IP1). So it suffices to associate to any element
of sly a derivation of sheaves Op1 — Op1, which is determined by its
restriction to the standard affine cover.

On the affine chart Uy, SL, acts by linear fractional transformations on t € Up:
a b . at+b
c d Coct+d’
This induces an action on f € Opa(Up):
-1
a b a b dt — b
(@ o) )o=r((z 8 o) =r(5=2).

This naturally leads to a realisation of the elements of sl as derivations of

Opa (Up).
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D(PL) and U(s1o
From Lie Algebras to D-modules Towards Beilinson—Bernstein

Sketch: Intrinsic Construction of {(sly) — D(IP!)

Let e = (9 3) € sla. Since sl is the tangent space of SL, at the identity,
there is an isomorphism

sly — SLy(Cle]);, M | 4+eM

which identifies e with the invertible matrix £ = (1 ¢). Here Cl[e] denotes the
dual numbers, hence €2 = 0. From this we obtain

(E-F)(t)=F(E"L-t)=F(t—e€)=F(t)+ (—F'(t))e.

Thus, the differential of E, which by construction describes the induced action
of e, is given by the derivation —d;, as expected. A similar computation
associates to f the derivation t29; and to h the derivation —2td;, respectively.
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