

Julian Reichardt

12.09.2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → ⊙ Q @

The long and the short of it

$s1₂$ is the tangent space of $SL₂$ at the identity

There is the following:

K ロ ▶ K 何 ▶

지금 되지 말이

 2990

重

イロメ イ何 メ ミメ イヨメ ニヨー

 Ω

Some Sheaves on X

Throughout, X is a smooth complex variety.

Definition (Sheaf of **C**-linear Endomorphisms)

Let M be a sheaf of **C**-vector spaces on X. The sheaf of **C**-linear endomorphisms of M, denoted by $\mathcal{E}nd_{\mathcal{C}}(\mathcal{M})$, is the sheaf of rings

 $U \mapsto \text{Hom}_{\underline{C}_X}(\mathcal{M}|_U, \mathcal{M}|_U)$,

where C_X is the constant sheaf associated to C.

Remark: \mathcal{O}_X is a subsheaf of $\mathcal{E}nd_{\mathbb{C}}(\mathcal{O}_X)$ via (left) multiplication.

Definition (Tangent Sheaf)

The tangent sheaf of X, denoted by \mathcal{T}_X , is the subsheaf

$$
\mathcal{T}_X = \mathcal{D}\text{er}_{\mathbb{C}}(\mathcal{O}_X) = \{ \theta \in \mathcal{E}\text{nd}_{\mathbb{C}}(\mathcal{O}_X) \, | \, \theta(\text{fg}) = \text{f}\theta(\text{g}) + \text{g}\theta(\text{f}) \} \, .
$$

[From Lie Algebras to](#page-9-0) D-modules

[Sheaves of Differential Operators and](#page-2-0) D-modules [Two Examples:](#page-4-0) A^n and P^1

イロメ イ母メ イヨメ イヨメーヨー

 Ω

Differential Operators and D-modules

Definition (Sheaf of Differential Operators)

The subsheaf of C-algebras generated by \mathcal{O}_X and \mathcal{T}_X in $\mathcal{E}nd_C(\mathcal{O}_X)$ is the sheaf of differential operators on X, denoted by \mathcal{D}_X .

Definition (D-module)

Let M be a quasi-coherent \mathcal{O}_X -module. We say that M is a (left) D-module if $M(U)$ is endowed with the structure of a (left) $\mathcal{D}_X(U)$ -module for every open subset $U \subseteq X$ and these structures are compatible with restrictions.

Remark: A (left) D-module M may, equivalently, be given as a quasi-coherent \mathcal{O}_X -module M equipped with a \mathbb{C}_X -linear morphism of sheaves $\nabla: \mathcal{T}_{\mathbf{X}} \to \mathcal{E} nd_{\mathcal{C}}(\mathcal{M})$ satisfying, in particular, a Leibniz-type rule.

[Sheaves of Differential Operators and](#page-2-0) D-modules [Two Examples:](#page-4-0) A^n and P^1

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Example: $X = \mathbb{A}^n$

Sheaves on affine *n*-space \mathbb{A}^n are determined by their global sections

KED KARD KED KED E VOQO

Example: $X = A^n$

Since X is affine, $\mathcal{D}(\mathbb{A}^n) = \mathcal{D}_X(X)$ is a C-subalgebra of

$$
\mathcal End_{\mathbb C}(\mathcal O_X)(X) = \operatorname{End}_{\mathbb C}(\mathcal O_X(X)) = \operatorname{End}_{\mathbb C}(\mathbb C[x_1,\ldots,x_n])\,.
$$

This subalgebra is spanned by the elements of

$$
\mathcal{O}_X(X) = \mathbb{C}[x_1,\ldots,x_n] \quad \text{and} \quad \mathcal{T}_X(X) = \bigoplus_{i=1}^n \mathbb{C}[x_1,\ldots,x_n]\partial_{x_i}
$$

where $f\in \mathbb{C}[x_1,\ldots,x_n]$ acts by (left) multiplication and ∂_{x_i} acts by taking the partial derivative with respect to x_i .

Since endomorphism rings are generally noncommutative, we have to compute the commutator relations for the 2*n* generators x_1, \ldots, x_n and $\partial_{x_1}, \ldots, \partial_{x_n}.$ These are

$$
[x_i, x_j](f) = x_i(x_j f) - x_j(x_i f) = 0
$$

$$
[\partial_{x_i}, \partial_{x_j}](f) = \partial_{x_i}(\partial_{x_j} f) - \partial_{x_j}(\partial_{x_i} f) = 0
$$

$$
[\partial_{x_i}, x_j](f) = \partial_{x_i}(x_j f) - x_j(\partial_{x_i} f) = \delta_{ij} f + x_j(\partial_{x_i} f) - x_j(\partial_{x_i} f) = \delta_{ij} f
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Thus, we can identify $\mathcal{D}(\mathbb{A}^n)$ with the *n*-th Weyl algebra $\mathcal{A}_n(\mathbb{C})$, which is defined as

$$
A_n(\mathbb{C})=\frac{\mathbb{C}\langle x_1,\ldots,x_n,y_1,\ldots,y_n\rangle}{\langle [x_i,x_j],[y_i,y_j],[x_i,y_j]-\delta_{ij}\rangle}.
$$

Consequently, (left) D-modules correspond to (left) modules over the (noncommutative) Weyl algebras.

[Sheaves of Differential Operators and](#page-2-0) D-modules [Two Examples:](#page-4-0) A^n and P^1

メロメ オ何 トメ ミメ メミメー

GB.

 Ω

Example: $X = \mathbb{P}^1$

Sheaves on projective *n*-space \mathbb{P}^n are determined by their restrictions to the standard affine cover by affine n-spaces **A**ⁿ together with glueing conditions for their intersections

KED KAP KED KED E MAA

Let $U_0 = \{ [x_0 : x_1] | x_0 \neq 0 \}$ and $U_1 = \{ [x_0 : x_1] | x_1 \neq 0 \}$ be the standard affine cover of X. Then $U_0 \cong U_1 \cong \mathbb{A}^1$ and $U_0 \cap U_1 \cong D(0) = \mathbb{A}^1 \setminus \{0\}.$

Choosing coordinates, we have $\mathcal{O}_X(U_0) = \mathbb{C}[t]$, $\mathcal{O}_X(U_1) = \mathbb{C}[s]$ and $\mathcal{O}_X(U_0\cap U_1)=\mathbb{C}[t,t^{-1}]$ with $s=t^{-1}.$ Then $\mathcal{D}_X(U_0)$ is generated by t and *∂*^t and D _x(*U*₁) is generated by *s* and $∂$ _s. On the intersection, we find that

$$
\partial_t(s) = \partial_t(t^{-1}) = -t^{-2}\partial_s(s) \implies \partial_s = -t^2\partial_t
$$

as the defining relation. Here we use that $\mathcal{D}_X(U_0\cap U_1)$ is generated by t , t^{-1} and ∂_t , being the restriction of $\mathcal{D}_{\bm{X}}(\mathit{U}_0)$ to a distinguished open. Consequently, a D-module on X is given by a pair of $A_1(\mathbb{C})$ -modules, whose localisations at t and $s = t^{-1}$, respectively, are isomorphic.

Remark: In contrast to general \mathcal{O}_X -modules on \mathbb{P}^1 , it turns out that D -modules on \mathbb{P}^1 are completely determined by their global sections.

 $\mathcal{D}(\mathbb{P}^1)$ and $\mathfrak{U}(\mathfrak{sl}_2)$ [Towards Beilinson–Bernstein](#page-12-0)

メロメ メ御 メメ きょ メ きょう

 $E = \Omega Q$

 $\mathcal{T}(\mathbb{P}^1)$ as Lie algebra

$\mathcal{T}(\mathbb{P}^1)$ together with the commutator of derivations is a Lie algebra, which is isomorphic to sI_2

KED KARD KED KED E VOQO

We consider the standard affine cover as before. Since \mathcal{T}_X is a sheaf, we can compute $\mathcal{T}(\mathbb{P}^1)=\mathcal{T}_X(X)$ from the corresponding exact sequence:

$$
0 \longrightarrow \mathcal{T}(\mathbb{P}^1) \longrightarrow \mathcal{T}_X(U_0) \times \mathcal{T}_X(U_1) \longrightarrow \mathcal{T}_X(U_0 \cap U_1).
$$

In the given coordinates, we know that $\mathcal{T}_X(U_0) = \mathbb{C}[t]\partial_t$, $\mathcal{T}_X(U_1) = \mathbb{C}[s]\partial_s$, $\mathcal{T}_X(U_0 \cap U_1) = \mathbb{C}[t, t^{-1}]\partial_t$ with $s = t^{-1}$ and $\partial_s = -t^2 \partial_t$.

A pair $(f(t)\partial_t,g(s)\partial_s)$ defines an element of $\mathcal{T}(\mathbb{P}^1)$ iff

$$
f(t)\partial_t - g(t^{-1})(-t^2\partial_t) = 0 \iff
$$

$$
a_0\partial_t + a_1t\partial_t + a_2t^2\partial_t + \cdots = -(b_0t^2\partial_t + b_1t\partial_t + b_2\partial_t + \cdots).
$$

This is only possible if $\deg f(t)$, $\deg g(s) \leq$ 2. Thus, $\mathcal{T}(\mathbb{P}^1)$ can be identified with the subspace of $\mathcal{T}_X(U_0)=\mathbb{C}[t]\partial_t$ generated by ∂_t , $t\partial_t$ and $t^2\partial_t$.

$\mathcal{D}(\mathbb{P}^1)$ and $\mathfrak{U}(\mathfrak{sl}_2)$ [Towards Beilinson–Bernstein](#page-12-0)

$\mathcal{T}(\mathbb{P}^1)$ as Lie algebra

Denote
$$
e = -\partial_t
$$
, $f = t^2 \partial_t$ and $h = -2t\partial_t$. Then
\n
$$
[h, e] = [-2t\partial_t, -\partial_t] = 2t[\partial_t, \partial_t] + [2t, \partial_t]\partial_t = -2\partial_t = 2e.
$$

Similarly, $[h, f] = -2f$ as well as $[e, f] = h$. This defines an isomorphism of \mathfrak{sl}_2 and $\mathcal{T}(\mathbb{P}^1)$ as Lie algebras. Since $\mathcal{O}(\mathbb{P}^1)=\mathbb{C}$, $\mathcal{T}(\mathbb{P}^1)$ generates $\mathcal{D}(\mathbb{P}^1)$ as **C**-algebra and there is an induced morphism

$$
\mathfrak{U}(\mathfrak{sl}_2)\to \mathcal{D}(\mathbb{P}^1)
$$

from the universal enveloping algebra of \mathfrak{sl}_2 to $\mathcal{D}(\mathbb{P}^1).$ We know that the centre of $\mathfrak{U}(\mathfrak{sl}_2)$ is generated by the Casimir element

$$
\Omega = 2\left(\frac{1}{2}h^2 + ef + fe\right) = h^2 + 2(ef - fe) + 4fe = h^2 + 2h + 4fe.
$$

One checks that

$$
(-2t\partial_t)^2 + 2(-2t\partial_t) + 4(t^2\partial_t)(-\partial_t) = 4t([\partial_t, t] + t\partial_t)\partial_t - 4t\partial_t - 4t^2\partial_t^2
$$

=
$$
4t(1 + t\partial_t)\partial_t - 4t(1 + t\partial_t)\partial_t = 0.
$$

Part of the assertion of Beilinson–Bernstein's localisation theorem is that this induces an isomorphism

$$
\mathfrak{U}(\mathfrak{sl}_2)/Z(\mathfrak{U}(\mathfrak{sl}_2))\cdot\mathfrak{U}(\mathfrak{sl}_2)\xrightarrow{\sim} \mathcal{D}(\mathbb{P}^1)\ldots \atop{\scriptscriptstyle\leftarrow}\mathbb{D}\times\mathbb{P}^1\rightarrow{\scriptscriptstyle\leftarrow}\mathbb{P}^
$$

イロメ イ何 メイヨメ イヨメーヨー

 QQ

A Final Remark

There is a natural (algebraic) action of SL_2 on \mathbb{P}^1 via linear fractional transformations, which yields the map $\mathfrak{sl}_2\to \mathcal{T}(\mathbb{P}^1)$ by (algebraic) differentiation

イロメ イ何 メイヨメ イヨメーヨー

 2990

Sketch: Intrinsic Construction of $\mathfrak{U}(\mathfrak{sl}_2) \rightarrow \mathcal{D}(\mathbb{P}^1)$

The map $\mathfrak{U}(\mathfrak{sl}_2) \rightarrow \mathcal{D}(\mathbb{P}^1)$ admits an intrinsic description, using: (1) \mathbb{P}^1 is the *flag variety* of SL_2 , admitting a natural SL_2 -action; (2) sI_2 is the tangent space of SL_2 at the identity.

イロメ イ何 メイヨメ イヨメーヨー

 Ω

Sketch: Intrinsic Construction of $\mathfrak{U}(\mathfrak{sl}_2) \rightarrow \mathcal{D}(\mathbb{P}^1)$

We want to construct a map $\mathfrak{U}(\mathfrak{sl}_2) \rightarrow \mathcal{D}(\mathbb{P}^1).$ We know that $\mathcal{D}(\mathbb{P}^1)$ is generated, as C-algebra, by $\mathcal{T}(\mathbb{P}^1)$. So it suffices to associate to any element of sI_2 a derivation of sheaves $\mathcal{O}_{\mathbb{P}^1} \to \mathcal{O}_{\mathbb{P}^1}$, which is determined by its restriction to the standard affine cover.

On the affine chart U_0 , SL_2 acts by linear fractional transformations on $t \in U_0$:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot t = \frac{at+b}{ct+d} \, .
$$

This induces an action on $f \in \mathcal{O}_{\mathbb{P}^1}(U_0)$:

$$
\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f \right)(t) = f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \cdot t \right) = f\left(\frac{dt - b}{a - ct}\right).
$$

This naturally leads to a realisation of the elements of $s1₂$ as derivations of $\mathcal{O}_{\mathbb{P}^1}(U_0)$.

KED KAP KED KED E MAA

Sketch: Intrinsic Construction of $\mathfrak{U}(\mathfrak{sl}_2) \rightarrow \mathcal{D}(\mathbb{P}^1)$

Let $e = \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \in \mathfrak{sl}_2$. Since \mathfrak{sl}_2 is the tangent space of SL_2 at the identity, there is an isomorphism

$$
\mathfrak{sl}_2 \to \mathrm{SL}_2(\mathbb{C}[\epsilon])_I, \qquad M \mapsto I + \epsilon M
$$

which identifies e with the invertible matrix $E = \left(\begin{smallmatrix} 1 & \epsilon \ 0 & 1 \end{smallmatrix} \right)$. Here $\mathbb{C}[\epsilon]$ denotes the dual numbers, hence $\epsilon^2=0$. From this we obtain

$$
(E \cdot f)(t) = f(E^{-1} \cdot t) = f(t - \epsilon) = f(t) + (-f'(t))\epsilon.
$$

Thus, the differential of E , which by construction describes the induced action of e , is given by the derivation $-\partial_t$, as expected. A similar computation associates to f the derivation t ²*∂*^t and to h the derivation −2t*∂*^t , respectively.